Q. Consider following dataframes, namely Sprices1 and Sprices2 storing prices closing 1 year apart.


            Sprices1
    closingPrice
05-01    531.35
05-02    527.93
05-03    NaN
05-04    NaN
05-05    527.81
05-06    515.14
05-07    509.96


        Sprices2
    closingPrice
05-01    631.35
05-02    427.93
05-03    805
05-04    NaN
05-05    267.81
05-06    455.14
05-07    NaN


What will be the output produced by the following code fragments?


(a)

print(Sprices1.isnull())

print(Sprices1.notnull()


(b)

pd.merge (Sprices1, Sprices2)

pd.merge(Sprices2, Sprices1)


(c)

pandas.concat(Sprices1, Sprices2)


Answer =

(a)
>>> print(sprices1.isnull())
       closingPrice
05-01         False
05-02         False
05-03          True
05-04          True
05-05         False
05-06         False
05-07         False

>>> print(sprices1.notnull())
       closingPrice
05-01          True
05-02          True
05-03         False
05-04         False
05-05          True
05-06          True
05-07          True


(b)
>>> pd.merge(sprices1,sprices2)
   closingPrice
0           NaN
1           NaN
2           NaN
3           NaN
>>> pd.merge(sprices2,sprices1)
   closingPrice
0           NaN
1           NaN
2           NaN
3           NaN


(c) ERROR

Post a Comment

You can help us by Clicking on ads. ^_^
Please do not send spam comment : )

Previous Post Next Post