Q. Consider the following tables Item and Customer and answer the questions that follow:
Table: Item
Item_ID | ItemName | Manufacturer | Price |
---|---|---|---|
PC01 | Personal Computer | HCL India | 42000 |
LC05 | Laptop | HP USA | 55000 |
PC03 | Personal Computer | Dell USA | 32000 |
PC06 | Personal Computer | Zenith USA | 37000 |
LC03 | Laptop | Dell USA | 57000 |
Table: Customer
Item_ID | CustomerName | City |
---|---|---|
LC03 | N Roy | Delhi |
PC03 | H Singh | Mumbai |
PC06 | R Pandey | Delhi |
LC03 | C Sharma | Chennai |
PC01 | K Agarwal | Bengaluru |
Assume that the Pandas has been imported as pd.
(a) Create a data frame called dfl for table item.
(b) Create a data frame called dfC for table Customer.
(c) Perform the default join operation on item_ID using two data-frames: dfl and dfC.
(d) Perform the left join operation on item_ID using two data-frames: dfl and dfC.
(e) Perform the right join operation on Item_ID using two data frames: dfi and dfC.
(f) Perform the default operation on Item_ID using two data frames: dfl and dfc with the left index as true.
(g) Perform the outer join operation on item_ID using two data frames: dfl and dfC.
(h) Create a new data frame dfN using data frames: dfl and dfC. The new dataframe data will hold both left index and right index true values.
(i) Arrange the data frame dfN in descending order of Price.
(j) Arrange the Data Frame dfN in descending order of City and Price.
Answer :-
(a)
import mysql.connector as a
db = a.connect(user = 'root', passwd = '0000000000', host = 'localhost', database = 'Path_Walla')
import pandas as pd
dfl = pd.read_sql(f'select * from item', db)
print(dfl)
(b)
import mysql.connector as a
db = a.connect(user = 'root', passwd = '0000000000', host = 'localhost', database = 'Path_Walla')
import pandas as pd
dfC = pd.read_sql(f'select * from Customer', db)
print(dfC)
(c) dfi.set_index('item_iD').join(dfc.set_index('key'))
(i) dfn.sort_values(by=['Price'],ascending=False)
(j) dfn.sort_values(by=['Price','city'],ascending=False)
Post a Comment
You can help us by Clicking on ads. ^_^
Please do not send spam comment : )