Q. Given a data-frame Sales that store sales records of a company of past few years. But the data-frame contains some missing data.


 

Item Type Sales Channel Order Date Order ID Total Revenue Total Cost Total Profit
0 Cosmetics Online 5/22/2017 8985.0 793518.00 477943.95 315574.85
1 Cereal Online 5/20/2017 5559.0 1780539.20 1013704.16. 766835.84
2 Personal Care Offline NaN NaN NaN NaN NaN
3 Personal Care Online 3/11/2017 6992.0 246415.95 170860.05 75555.90
4 Snacks Online 2/25/2017 7562.0 1117953.66 713942.88 404010.78
5 Household Offline 2/8/2017 52284.0 5997054.98 4509793.96 1487261.82
6 Meat Online NaN NaN NaN NaN NaN
7 Clothes Online 1/13/2017 1873.0 902980.64 296145.92 606834.72
8 Cosmetics Online 12/31/2016 331438481.0 3876652.40 2334947.11 1541705.29
9 Office Supplies Offline NaN NaN NaN NaN NaN
10 Cosmetics Offline 11/19/2016 419123971.0 3039414.40 1830670.16 1208744.24
11 Cosmetics Online 11/15/2016 286959302.0 2836990.80 1708748.37 1128242.43
12 Beverages Offline NaN NaN NaN NaN NaN
13 Clothes Offline 7/25/2016 807025039.0 600821.44 197048.32 403773.12
14 Snacks Online 6/30/2016 795490682.0 339490.50 216804.00 122686.50

Write a script that does the following:-


(i) Lists the presence of missing data in whole data-frame.

(ii) Fills the missing values with 999.

(iii) Print the data-frame after filling missing value.


Answer :-

import pandas as pd
import numpy as np.

# creation or loading of dataframe Sales
# presence of missing data element wise

print("Missing data element wise")
print((Sales.isnull() ) )
Sales Sales.fillna (999)
print("After filling missing values with 999, the dataframe is like:")
print (Sales)

Post a Comment

You can help us by Clicking on ads. ^_^
Please do not send spam comment : )

Previous Post Next Post