Q. Consider the Data Frame mk, write a program to calculate average marks for each section after filling up of missing values.
DataFrame mk :-
A B C D
Acct NaN 94.0 92.0 97.0
Eco 90.0 94.0 NaN 97.0
Eng 95.0 89.0 91.0 89.0
IP 94.0 NaN 99.0 95.0
Math 97.0 100.0 99.0 NaN
Answer :-
import pandas as pd import numpy as np x = { 'A': {'Acct': np.NaN, 'Eco' : 90.0, 'Eng': 95.0,\ 'IP' : 94.0, 'Math': 97.0},\ 'B' : { 'Acct': 94.0, 'Eco':94, 'Eng': 89,\ 'IP' : np.NaN, 'Math' : 100},\ 'C': {'Acct': 92, 'Eco' : np.NaN, 'Eng' : 91,\ 'IP' :99, 'Math':99},\ 'D': {'Acct':97, 'Eco': 97, 'Eng': 89,\ 'IP' : 95, 'Math': np.NaN}} mk = pd.DataFrame (x) print ("DataFrame mk :-\n", mk) nmk = mk.fillna( {'A':20, 'B':10, 'C':20, 'D':0}) print("\nAverage marks section wise after filling missing values\n") print (nmk.mean())
Output :-
DataFrame mk :-
A B C D
Acct NaN 94.0 92.0 97.0
Eco 90.0 94.0 NaN 97.0
Eng 95.0 89.0 91.0 89.0
IP 94.0 NaN 99.0 95.0
Math 97.0 100.0 99.0 NaN
Average marks section wise after filling missing values
A 79.2
B 77.4
C 80.2
D 75.6
dtype: float64
>>>
Post a Comment
You can help us by Clicking on ads. ^_^
Please do not send spam comment : )