Q. Consider Data Frame mk as shown below:
Data-frame mk :-
A B C D
Acct NaN 94.0 92.0 97.0
Eco 90.0 94.0 NaN 97.0
Eng 95.0 89.0 91.0 89.0
IP 94.0 NaN 99.0 95.0
Math 97.0 100.0 99.0 NaN
Write a program to fill missing values section wise as given below and name the new Data Frame as nmk :
For section 'A' fill 20,
For section 'B' fill 10,
For section 'C' fill 20,
For section 'D' fill 0
Answer :-
import pandas as pd import numpy as np x = { 'A': {'Acct': np.NaN, 'Eco' : 90.0, 'Eng': 95.0,\ 'IP' : 94.0, 'Math': 97.0},\ 'B' : { 'Acct': 94.0, 'Eco':94, 'Eng': 89,\ 'IP' : np.NaN, 'Math' : 100},\ 'C': {'Acct': 92, 'Eco' : np.NaN, 'Eng' : 91,\ 'IP' :99, 'Math':99},\ 'D': {'Acct':97, 'Eco': 97, 'Eng': 89,\ 'IP' : 95, 'Math': np.NaN}} mk = pd.DataFrame (x) print ("DataFrame mk :-\n", mk) nmk = mk.fillna( {'A':20, 'B':10, 'C':20, 'D':0}) print("\nDataframe after filling missing values section wise\n") print (nmk)
Output :-
DataFrame mk :-
A B C D
Acct NaN 94.0 92.0 97.0
Eco 90.0 94.0 NaN 97.0
Eng 95.0 89.0 91.0 89.0
IP 94.0 NaN 99.0 95.0
Math 97.0 100.0 99.0 NaN
Dataframe after filling missing values section wise
A B C D
Acct 20.0 94.0 92.0 97.0
Eco 90.0 94.0 20.0 97.0
Eng 95.0 89.0 91.0 89.0
IP 94.0 10.0 99.0 95.0
Math 97.0 100.0 99.0 0.0
>>>
Post a Comment
You can help us by Clicking on ads. ^_^
Please do not send spam comment : )